ProjectConnections.com Template

Software Code Review Guidelines

	INTRODUCTION: Formal Code Review Guidelines

	The Example Code Review Guidelines Document Starts on the Following Page

What This Is
Example of a company guideline for how to conduct formal software code reviews. It includes the following contents:

· Code review process overview

· Instructions for code preparation prior to a code review

· Code review checklist

· Code review records forms

Why It’s Useful

This particular company created medical devices and coded the embedded software in C. Their development process had to be stringent enough to ensure that “safety-significant” errors were caught during reviews and testing. They also had to be able to show regulatory agencies at any time that their project followed a process that reviewed designs for problems (especially those that could cause a danger of harm to a patient on whom the device was being used), recorded those problems, then fixed the problems. This code review process was part of their documented development process.

Note, however, that such a code review guideline is useful for other types of software products as well! Any software group wanting to improve the quality of their code and the actual reviews can benefit from elements of this process. The payoff will be finding more problems sooner rather than later- on paper rather than during testing or beyond.

How to Use It

During a project, such a document is used by team members in the following way:

· During project planning, it is referenced for reminders about how much review time should be allocated during the project for the software being developed - including time from all the people who will need to participate in the review.

· During design and development (coding) portion of the project, the checklists and code review records forms are used to conduct code reviews.

Use this guideline for a ready-made format for your own code reviews. Or, use it simply for approaches you can use to

· include review tasks in your projects to ensure mistakes are caught early, rather than later during testing (or after release to customers!) when they’ll be much more costly to correct.

· document, if you wish, a formal code review process that’s appropriate for your organization

Even if you decide to use a less formal approach than these guidelines call for, elements of this document may be very useful for your projects.

Formal Software Code Review Guidelines

CONTENTS

Code Review Process Overview

Code Preparation

Off-line Review

Formal Review Meeting

Instructions for Code Preparation

Code Review Checklist (3 pages)

Use to guide Code Preparation

Fill out checklist during Off-line Code Review

Approve during Formal Review Meeting

Code Review Record Forms (2 pages)

Fill out during Formal Review Meeting

Attach Code Review Checklist

File as official record of meeting

CODE REVIEW PROCESS OVERVIEW

Stages: The overall code review process is divided into three stages.

	Stage
	Name
	Purpose

	1
	Code Preparation
	Preparer ensures that code adheres to code review checklist. Makes non-functional changes as necessary. Notes any functional changes that should be made to adhere to checklist. Pays particular attention to including all items required for header blocks and adding helpful comments.

	2
	Off-line Code Review
	Individually or in small groups as desired, reviewers review the code for all items on the code review checklist, covering the areas of proper operation, adherence to coding guidelines, and implementation of risk (and safety hazard) mitigation actions. Reviewers recommend changes.

	3
	Formal Code Review Meeting
	Participants review suggested changes from the off-line code reviews, decide actions, approve code.

SYMBOL 183 \f "Symbol" \s 10 \h
The code review checklists filled out during off-line review, and any recommended changes to code, will be analyzed.

SYMBOL 183 \f "Symbol" \s 10 \h
The code review record will be filled out to document any actions, including required changes to the code, and the approval of the code.

SYMBOL 183 \f "Symbol" \s 10 \h
The code review record and attached code review checklists will be filed as the official record of the code review.

Definitions:
The following definitions apply.

	Code Review
	The formal review of software units or modules.

	a Unit
	One function or routine, starting from its comment header block, to the last line of code or comment in the unit

	a Module
	The logical grouping of a set of units and its data structures. Normally a module will consist of one or more '.C' source files and it's associated '.H' files.

	the Presenter
	The person who authored the module or unit(s) for code review.

	the Reviewers
	The two or more people who are reviewing the module or unit(s)

	SRS
	Software Requirements Specification – document containing the user/system level requirements this piece of software must fulfill

	SDS
	Software Design Specification - document containing specific information about the high level design of the Unit or Module being reviewed.

INSTRUCTIONS FOR CODE PREPARATION

	STEP
	DESCRIPTION

	Check out file to be prepared
	The relevant module and any associated header files should be formally 'checked out' of the version control or software code control system for any changes to take place.

The most recent checked-in or promoted revision should be used.

	Make changes to each unit/module:
	In order to prevent unintentional change of functionality, no changes to the actual body of code or its structure should be made prior to a first pass review. Changes which do not affect the functionality (such as the addition of comments) can be made.

	Required:

Add code header

	See code review checklist in next section for standards each header must follow. The general categories of information to be included are:

SYMBOL 183 \f "Symbol" \s 10 \h
Comments

SYMBOL 183 \f "Symbol" \s 10 \h
Data usage (input/output parameters, data structures accessed, changes to global variables, etc.)

SYMBOL 183 \f "Symbol" \s 10 \h
Unit processing algorithm/design

SYMBOL 183 \f "Symbol" \s 10 \h
Potential failure modes related to system hazards to the patient; required mitigation actions

SYMBOL 183 \f "Symbol" \s 10 \h
Miscellaneous notes on critical or risky areas of the design; design assumptions; etc.

	Recommended: comment related units
	If, when preparing just one unit from a module, it is found necessary to analyze other un-reviewed units, the addition of comments should be made, and any helpful information that could be of future use in the review and/or test of those additional units should be recorded.

	Required: Document recommended changes to actual code
	Recommended changes may be prepared on a copy of the module, and presented for review.

Both the original and the copy with differences clearly indicated should be provided.

	Run Lint
	Lint must be run on the module or unit(s).

Each warning or message produced should be inspected and any real issues corrected or flagged for correction

See the code review checklist on the following pages for a list of the items Lint must be used to detect.

Global wrap-up' output can be discarded and ignored for code review.

The final Lint output will be recorded as part of the formal review meeting.

	Check in files
	The updated module(s) should be checked back into the official version control or software code control system

	Prepare diagrams and other supporting information
	Data flow, state diagrams or any other useful descriptive information should be prepared to present along with the code for review. This information may be added to the SDS after the review.

CODE REVIEW CHECKLIST: MODULES (p. 1 of 1)

Use of this form:

	Code Preparation:
	Use this checklist as a guideline for preparing the module

	Off-line Code Review:
	The items on this checklist should be reviewed during Off-line Code Review.

	Formal Code Review Meeting:
	This form, filled out during the Off-line Code Review, should be brought to the formal meeting, used as a checklist for verification of all items, and attached to the code review record.

	CATEGORY
	ITEM
	PRESENT?

Y, N, N/A

	Module header
	The module must have a module header block containing:
	

	
	File name:
	

	
	Original creator:
	

	
	Date created:
	

	
	Person who last changed code (if different from creator)
	

	
	Code revision number and change history (with dates).

 NOTE: The name of each changed unit should be listed

 NOTE: If a change is made to correct a defect, the number or ID of the defect corrected should be entered as well.
	

	
	High level description: (explain the module's purpose, and the name/purpose of key data structures, variables, sub-functions used, etc.)
	

	
	Failure modes and effects analysis: List types of failures which could occur in this module and result in a hazard to the patient. List the types of mitigation actions the software takes to prevent hazards from occurring. If these risks are documented in a separate document, reference it. (Editor’s note: for non-medical projects, the corollary would simply be an appropriate analysis of possible software failure modes, and what the software should do in each case.)
	

	
	
	

	Module definitions and declarations
	Grouping: Definitions and declarations should be separated into distinct groups, each with a comment header.

For example, #defines, #includes, constant definitions, local function prototypes, etc. would all be grouped separately.

If required for greater logical clarity, however, related definitions and declarations may be mixed
	

	
	Commenting: Each definition or declaration should have an associated descriptive comment unless the declaration is really obvious.
	

CODE REVIEW CHECKLIST: Units (p. 1 of 2)

Use of this form:

	Code Preparation:
	Use this checklist as a guideline for preparing each unit in the module

	Off-line Code Review:
	The items on the checklist should be reviewed during Off-line Code Review.

	Formal Code Review Meeting:
	This form, filled out during the Off-line Code Review, should be brought to the formal meeting, used as a checklist for verification of all items, and attached to the code review record.

	CATEGORY
	ITEM
	PRESENT?

Y, N, N/A

	Function header block
	Every function (Unit) must have a comment header block containing:
	

	
	Function name
	

	
	Change history: List of each change to the unit, with the date of the change and the name of the person making the change. Reference defect numbers or ID if the change was to correct a defect.
	

	
	Purpose: A short description of the unit's purpose. The description should be written such that the unit's purpose in fulfilling the original software requirements in the SRS can be understood.
	

	
	I/O description: A description of the inputs and outputs expected, specifying their acceptable ranges.
	

	
	Return value: A description of the return value
	

	
	External variables: A description of any external variables used, specifying acceptable ranges.
	

	
	Unit design/algorithm: A more detailed description of the unit's processing. Should be detailed enough that reviewers can determine whether the code meets its design, but not so detailed that the description is just pseudo-code.
	

	
	Failure modes analysis: A list of possible failure modes resulting in hazards or error conditions, and any mitigation actions this unit is required to take (for example, range checking a data value before use.)
	

	Lint results
	As noted in the Stage 1 Preparation instructions, Lint should have been run on the module or unit(s). The final Lint output should be recorded as part of the formal review meeting.

Each warning or message produced by Lint should have been inspected and any issues corrected. The items listed below must be checked for.

'Global wrap-up' output can be discarded and ignored for code review.
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Loop index not modified within the loop
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
No extraneous code exists
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
All data references defined, computed, or obtained from external source.
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
All defined and referenced calling sequence parameters agree.
	

CODE REVIEW CHECKLIST: Units (p. 2 of 2)

	CATEGORY
	ITEM
	PRESENT?

Y, N, N/A

	Code Checks
	
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Descriptive comments are accurate and informative.
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Return values (in particular error returns) are not ignored.
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Constants and literals are not hard coded.
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
All variables used have obvious or descriptive names, and correct scope.
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Local functions and non-automatic variables are declared static.
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
System global functions have the module name as a prefix to the unit name.
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
All functions have prototypes (compiler checks this).
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Data structure fields are described and commented clearly.
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Code is logically correct (Code performs intended functions, operates correctly)
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Numerical methods are sufficient
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Accuracy of control outputs to external devices are within tolerance
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
System I/O mechanisms are consistently used.
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Standard module communication techniques are used (e.g. use of message system)
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Errors are detected and handled, and processing continued
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Error handling conventions are followed (standard use of error handling task, etc.)
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Input values (or other data used) are checked for reasonableness before use
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Where necessary, critical output parameters or data are checked for reasonableness during processing
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Code pays attention to recovery from potential hardware faults (e.g. arithmetic faults, power failure, clock).
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Code pays attention to recovery from device errors.
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
There is no redundant code.
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
The structure is clean and indentations correct.
	

	
	SYMBOL 183 \f "Symbol" \s 10 \h
Over complication is avoided.
	

	SDS Check
	SDS (Software Design Specification) info for this unit is accurate
	

FORMAL CODE REVIEW RECORD (page 1 of 2)

Fill in the following information as the formal record of the review:

	Date and time of review
	

	Presenter
	

	Reviewers
	

	Module (or unit) under review
	

	Module (or unit) revision number reviewed.
	

	Supporting information used in review
	__ SDS __ Diff listings for suggested changes __ New diagrams

___ Code Review checklists __ Lint output ___ Other ____________

Notes on recommended specifics of unit testing

	Function name
	Specific notes on recommended unit testing

	
	

	
	

	
	

Additional hazards/ error conditions and failure modes identified.

	Failure mode
	Resulting hazard or error condition the user will see
	Mitigation action software must implement
	Does SW need change?

	
	
	
	

	
	
	
	

	
	
	
	

	Outstanding issues
	Assigned to
	Due Date - resolution

	
	
	

	
	
	

	
	
	

	SDS update required?
	Y N
	Who:

	Sign-off date
	

NOTE: ATTACH CODE REVIEW CHECKLISTS (Module: 1 page. Each Unit: 2 pages)

CODE REVIEW RECORD (page 2)

List of suggested and approved changes:

	Change
	Description of implementation

	
	

	
	

	
	

	
	

	
	

Other code review comments

	

	

	

	

	

	

	

NOTE: ATTACH CODE REVIEW CHECKLISTS (Module: 1 page. Each Unit: 2 pages)

©Copyright 2004 Emprend Inc. / ProjectConnections.com. Permission for Members’ use on their projects.
 Page 9
See our Terms of Service for information on PMO/group use and corporate subscriptions.

