
 About Scrum
A Management Framework

Scrum is a management framework for incremental product
development using one or more cross-functional, self-organizing teams
of about seven people each.

Scrum provides a structure of roles, meetings, rules, and artifacts.
Teams are responsible for creating and adapting their processes within
this framework.

Scrum uses fixed-length iterations, called Sprints, which are typically
two weeks or 30 days long. Scrum teams attempt to build a potentially
shippable (properly tested) product increment every iteration.

An Alternative to Waterfall

Scrum’s incremental, iterative approach trades the traditional phases of
"waterfall" development for the ability to develop a subset of high-value
features first, incorporating feedback sooner.

Figure 1: Traditional “waterfall” development depends on a perfect understanding of the product
requirements at the outset and minimal errors executing each phase.

Project

Start

Iteration 1

QA / Acceptance

Testing

Design &

Analysis

Implementation & Developer Testing

Evaluation /

Prioritization

Detailed

Requirements

(Deployment)

Iteration

Detail

Iteration 2 Iteration 3 Iteration 4

Project

End

Figure 2: Scrum blends all development activities into each iteration, adapting to discovered
realities at fixed intervals.

The greatest potential benefit of Scrum is for complex work involving
knowledge creation and collaboration, such as new product
development. Scrum is usually associated with object-oriented software
development. Its use has also spread to the development of products
such as semiconductors, mortgages, and wheelchairs.

Doing Scrum, or Pretending to Do Scrum?

Scrum’s relentless reality checks expose dysfunctional constraints in
individuals, teams, and organizations. Many people claiming to do
Scrum modify the parts that require breaking through organizational
impediments and end up robbing themselves of most of the benefits.

Requirements
Analysis

Design

Code

Integration

Test

Deploy

 Scrum Roles
Product Owner

• Single person responsible for maximizing the return on investment
(ROI) of the development effort

• Responsible for product vision

• Constantly re-prioritizes the Product Backlog, adjusting any long-
term expectations such as release plans

• Final arbiter of requirements questions

• Accepts or rejects each product increment

• Decides whether to ship

• Decides whether to continue development

• Considers stakeholder interests

• May contribute as a team member

• Has a leadership role

Scrum Development Team

• Cross-functional (e.g., includes members with testing skills, and
often others not traditionally called developers: business analysts,
domain experts, etc.)

• Self-organizing / self-managing, without externally assigned roles

• Negotiates commitments with the Product Owner, one Sprint at a
time

• Has autonomy regarding how to reach commitments

• Intensely collaborative

• Most successful when located in one team room, particularly for the
first few Sprints

• Most successful with long-term, full-time membership. Scrum moves
work to a flexible learning team and avoids moving people or
splitting them between teams.

• 7 ± 2 members

• Has a leadership role

ScrumMaster

• Facilitates the Scrum process

• Helps resolve impediments

• Creates an environment conducive to team self-organization

• Captures empirical data to adjust forecasts

• Shields the team from external interference and distractions to keep
it in group flow (a.k.a. the zone)

• Enforces timeboxes

• Keeps Scrum artifacts visible

• Promotes improved engineering practices

• Has no management authority over the team (anyone with authority
over the team is by definition not its ScrumMaster)

• Has a leadership role

Six Pages About Scrum
by Michael James, CollabNet Inc.

© Copyright 2010 CollabNet, Inc. All rights reserved.

 Scrum Meetings

Sprint Planning

Meeting

Daily Scrum

Sprint Review

Meeting

Sprint

Retrospective

Meeting

Backlog

Refinement

Meeting

Figure 3: Scrum flow.

All Scrum Meetings are facilitated by the ScrumMaster, who has no
decision-making authority at these meetings.

Sprint Planning Meeting

At the beginning of each Sprint, the Product Owner and team hold a
Sprint Planning Meeting to negotiate which Product Backlog Items they
will attempt to convert to working product during the Sprint. The
Product Owner is responsible for declaring which items are the most
important to the business. The team is responsible for selecting the
amount of work they feel they can implement without accruing
technical debt. The team “pulls” work from the Product Backlog to the
Sprint Backlog.

When teams are given complex work that has inherent uncertainty,
they must work together to intuitively gauge their capacity to commit to
items, while learning from previous Sprints. Planning their hourly
capacity and comparing their estimates to actuals makes the team
pretend to be precise and reduces ownership of their commitments.
Unless the work is truly predictable, they should discard such practices
within the first few Sprints or avoid them altogether.

Until a team has learned how to complete a potentially-shippable
product increment each Sprint, it should reduce the amount of
functionality it commits to. Failure to change old habits leads to
technical debt and eventual design death, as shown in Figure 14.

If the top of the Product Backlog has not been refined, a major portion
of the planning meeting should be spent doing this, as described in the
Backlog Refinement Meeting section.

Toward the end of the Sprint Planning Meeting, the team breaks the
selected items into an initial list of Sprint Tasks, and makes a final
commitment to do the work.

The maximum allotted time (a.k.a. timebox) for planning a 30-day
Sprint is eight hours, reduced proportionally for a shorter Sprint.

Product Backlog

User login

S

SSL enable

S

Reset lost password

M

Account lockout
after three attempts

S

LDAP integration

M

Register a new login

L

Edit registration

M

Admin reporting

XL

XL

determine requirements for password
policy

page layout (design) get latest JBoss running

choose persistence strategy
(Hibernate?)

write code (using test-driven
development)

exploratory testing

agree on best algorithm for
randomizing passwords

decide where to put the link code (using test-driven development)

add screenshot and text to user manual exploratory testing

analyze example config file get official certificate from I.T. install certificate

update deploy target in build.xml exploratory testing (3 browsers) update installation document

Sprint Backlog

User login

S

Reset lost password

M

SSL enable

S

Account lockout
after three
attempts

S

code (using test-driven development) update migration tool to include new
row for locked account

manual test (try to break in with policy
installed)

update documents

Selected
Product

Increment

User-managed
wishlists

Figure 3: Sprint Planning Meeting outcome is committed Product Backlog Items (PBIs) and
subordinate Sprint Tasks.

Daily Scrum and Sprint Execution

Every day at the same time and place, the Scrum Development Team
members spend a total of 15 minutes reporting to each other. Each
team member summarizes what he did the previous day, what he will
do today, and what impediments he faces.

Standing up at the Daily Scrum will help keep it short. Topics that
require additional attention may be discussed by whomever is
interested after every team member has reported.

The team may find it useful to maintain a current Sprint Task List, a
Sprint Burndown Chart, and an Impediments List. During Sprint
execution it is common to discover additional tasks necessary to
achieve the Sprint goals. Impediments caused by issues beyond the
team’s control are considered organizational impediments.

It is almost always useful for the Product Owner to attend the Daily
Scrum. But when any attendee also happens to be the team's boss, the
invisible gun effect hampers self-organization and emergent
leadership. People lacking real experience of team self-organization
won’t see this problem, just as fish are unaware of water. Conversely, a
team that needs additional expertise in product requirements will
benefit from increased Product Owner involvement, including Daily
Scrum attendance.

The Daily Scrum is intended to disrupt old habits of working
separately. Members should remain vigilant for signs of the old
approach. For example, looking only at the ScrumMaster when
speaking is one symptom that the team hasn’t learned to operate as a
self-organizing entity.

Sprint Review Meeting

After Sprint execution, the team holds a Sprint Review Meeting to
demonstrate a working product increment to the Product Owner and
everyone else who is interested.

The meeting should feature a live demonstration, not a report.

After the demonstration, the Product Owner reviews the commitments
made at the Sprint Planning Meeting and declares which items he now
considers done. For example, a software item that is merely “code
complete” is considered not done, because untested software isn’t
shippable. Incomplete items are returned to the Product Backlog and
ranked according to the Product Owner’s revised priorities as
candidates for future Sprints.

The ScrumMaster helps stakeholders convert their feedback to new
Product Backlog Items for prioritization by the Product Owner. Often,
new scope discovery outpaces the team’s rate of development. If the
Product Owner feels that the newly discovered scope is more important
than the original expectations, new scope displaces old scope in the
Product Backlog.

© Copyright 2010 CollabNet, Inc. All rights reserved.

The Sprint Review Meeting is the appropriate meeting for external
stakeholders (even end users) to attend. It is the opportunity to inspect
and adapt the product as it emerges, and iteratively refine everyone’s
understanding of the requirements. New products, particularly
software products, are hard to visualize in a vacuum. Many customers
need to be able to react to a piece of functioning software to discover
what they will actually want. Iterative development, a value-driven
approach, allows the creation of products that couldn’t have been
specified up front in a plan-driven approach.

Sprint Retrospective Meeting

Each Sprint ends with a retrospective. At this meeting, the team reflects
on its own process. They inspect their behavior and take action to adapt
it for future Sprints.

Dedicated ScrumMasters will find alternatives to the stale, fearful
meetings everyone has come to expect. An in-depth retrospective
requires an environment of psychological safety not found in most
organizations. Without safety, the retrospective discussion will either
avoid the uncomfortable issues or deteriorate into blaming and
hostility.

A common impediment to full transparency on the team is the presence
of people who conduct performance appraisals.

Another impediment to an insightful retrospective is the human
tendency to jump to conclusions and propose actions too quickly. Agile
Retrospectives, the most popular book on this topic, describes a series
of steps to slow this process down: Set the stage, gather data, generate
insights, decide what to do, close the retrospective.1 Another guide
recommended for ScrumMasters, The Art of Focused Conversations,
breaks the process into similar steps: Objective, reflective, interpretive,
and decisional (ORID).2

A third impediment to psychological safety is geographic distribution.
Geographically dispersed teams usually do not collaborate as well as
those in team rooms.

Retrospectives often expose organizational impediments. Once a team
has resolved the impediments within its immediate influence, the
ScrumMaster should work to expand that influence, chipping away at
the organizational impediments.

ScrumMasters should use a variety of techniques to facilitate
retrospectives, including silent writing, timelines, and satisfaction
histograms. In all cases, the goals are to gain a common understanding
of multiple perspectives and to develop actions that will take the team
to the next level.

Backlog Refinement Meeting

Most Product Backlog Items (PBIs) initially need refinement because
they are too large and poorly understood. Teams have found it useful to
take a little time out of Sprint Execution — every Sprint — to help
prepare the Product Backlog for the next Sprint Planning Meeting.

In the Backlog Refinement Meeting, the team estimates the amount of
effort they would expend to complete items in the Product Backlog and
provides other technical information to help the Product Owner
prioritize them.3 Large vague items are split and clarified, considering
both business and technical concerns. Sometimes a subset of the team,
in conjunction with the Product Owner and other stakeholders, will
compose and split Product Backlog Items before involving the entire
team in estimation.

A skilled ScrumMaster can help the team identify thin vertical slices of
work that still have business value, while promoting a rigorous
definition of “done” that includes proper testing and refactoring.

It is common to write Product Backlog Items in User Story form.4 In
this approach, oversized PBIs are called epics. Traditional development
breaks features into horizontal tasks (resembling waterfall phases) that
cannot be prioritized independently and lack business value from the
customer’s perspective. This habit is hard to break.

Agility requires learning to split large epics into user stories
representing very small product features. For example, in a medical
records application the epic “display the entire contents of a patient’s
allergy records to a doctor” yielded the story “display whether or not
any allergy records exist.” While the engineers anticipated significant
technical challenges in parsing the internal aspects of the allergy
records, the presence or absence of any allergy was the most important
thing the doctors needed to know. Collaboration between business
people and technical people to split this epic yielded a story
representing 80% of the business value for 20% of the effort of the
original epic.

Since most customers don’t use most features of most products, it’s
wise to split epics to deliver the most valuable stories first. While
delivering lower-value features later is likely to involve some rework,
rework is better than no work.

The Backlog Refinement Meeting lacks an official name and has also
been called “Backlog Grooming,” “Backlog Maintenance,” or “Story
Time.”

Figure 4: During Backlog Refinement, large PBIs (often called “epics”) near the top of the Product
Backlog are split into thin vertical feature slices (“stories”), not horizontal implementation phases.

 Scrum Artifacts
Product Backlog

User login

S

SSL enable

S

Reset lost password

M

Account lockout after
three attempts

S

LDAP integration

M

Register a new login

L

Admin reporting

XL

only one item
at a time
is top prioritytop items

are more
granular

Figure 5: Product Backlog

• Force-ranked list of desired functionality

• Visible to all stakeholders

• Any stakeholder (including the Team) can add items

• Constantly re-prioritized by the Product Owner

• Items at top are more granular than items at bottom

• Maintained during the Backlog Refinement Meeting

Cut/paste rich
text and graphics

Cut/
paste
plain
text

Cut/
paste

rich text

database
schema

© Copyright 2010 CollabNet, Inc. All rights reserved.

1 Agile Retrospectives, Pragmatic Bookshelf, Derby/Larson (2006)

2 The Art of Focused Conversations, New Society Publishers (2000)

3 The team should collaborate to produce a jointly-owned estimate for an item. See http://blogs.danube.com/estimation-game

4 User Stories Applied: For Agile Software Development, Addison Wesley, Cohn (2004)

http://blogs.danube.com/estimation-game
http://blogs.danube.com/estimation-game

Product Backlog Item (PBI)

• Specifies the what more than the how of a customer-centric feature

• Often written in User Story form

• Has a product-wide definition of done to prevent technical debt

• May have item-specific acceptance criteria

• Effort is estimated by the team, ideally in relative units (e.g., story
points)

• Effort is roughly 2-3 people 2-3 days, or smaller for advanced teams

Figure 6: A PBI represents a customer-centric feature, usually requiring several tasks to achieve
definition of done.

Sprint Backlog

• Consists of committed PBIs negotiated between the team and the
Product Owner during the Sprint Planning Meeting

• Scope commitment is fixed during Sprint Execution

• Initial tasks are identified by the team during Sprint Planning
Meeting

• Team will discover additional tasks needed to meet the fixed scope
commitment during Sprint execution

• Visible to the team

• Referenced during the Daily Scrum Meeting

Figure 7: Sprint Backlog is often represented with an “information radiator” such as a physical
taskboard.

Account lockout after three
attempts

 Acceptance Criteria:

Small

+ Task

+ Task

+ Task

+ Task

+ Task

+ Task

Done

Done

Done

Done

Done

Done

Add SVN revision numbe...
Estimate: 2

Web Client log in with...
Estimate: 1

Add new SWP fields to ...
Done when:
- customer number
- indicate SW edition
- form fields which generate the file
Estimate: 2

Add support "link" to ...
to hardcoded page with customer
number in the url
Estimate: 1

Display # of Licensed ...
Swing client 'About' page
Estimate: 2

Downgrade from SW Pro ...
and re-upgrade from a previous
Pro upgrade.
Estimate: 6

PBIs Tasks / Status

Not Started 7 Tasks Impeded 0 Tasks 9 Tasks 57 TasksIn Progress Done

Fix It

Hrs: 0 Kevin Hobbs

Do It

Hrs: 0 Zoltan Szugyi

Do It

Hrs: 0 Victor Szalvay

Do It

Hrs: 0 Kevin Hobbs

Test throughly

Hrs: 0 Kelly Louie

Do It

Hrs: 0 Eric Barendt

Installer should downg...

Hrs: 0 Eric Barendt

Did we remove columns ...

Hrs: 0 Eric Barendt

Add customer number, e...

Hrs: 0 Eric Barendt

Update license generators

Hrs: 0 Eric Barendt

Nice error messages

Hrs: 0 Eric Barendt

Inform user when SWBas...

Hrs: 0 Eric Barendt

Figure 8: Sprint Backlog may also be represented electronically in a collaboration tool such as
ScrumWorks® Pro.

Sprint Task

• Specifies how to achieve the PBI’s what

• Requires one day or less of work

• Remaining effort is re-estimated daily, typically in hours

• During Sprint Execution, a point person may volunteer to be
primarily responsible for a task

• Owned by the entire team; collaboration is expected

Figure 9: Sprint tasks required to complete one backlog item require a mix of activities no longer
done in separate phases (e.g., requirements elicitation, analysis, design, implementation,
deployment, testing).

Sprint Burndown Chart

• Indicates total remaining team task hours within one Sprint

• Re-estimated daily, thus may go up before going down

• Intended to facilitate team self-organization

• Fancy variations, such as itemizing by point person or adding trend
lines, tend to reduce effectiveness at encouraging collaboration

• Seemed like a good idea in the early days of Scrum, but in practice
has often been misused as a management report, inviting
intervention. The ScrumMaster should discontinue use of this chart
if it becomes an impediment to team self-organization.

250

200

150

100

50

0
24-Jul 26-Jul 28-Jul 30-Jul 1-Aug 3-Aug 5-Aug 7-Aug 9-Aug 11-Aug 13-Aug

Figure 10: Sprint Burndown Chart

determine
requirements
for password
policy

page layout
(design)

get latest
JBoss
running

choose
persistence
strategy
(Hibernate?)

write code
(using test-
driven
development)

exploratory
testing

© Copyright 2010 CollabNet, Inc. All rights reserved.

Product / Release Burndown Chart

• Tracks the remaining Product Backlog effort from one Sprint to the
next

• May use relative units such as Story Points for Y axis

• Depicts historical trends to adjust forecasts

Effort Remaining Backlog w/ unestimated items Velocity Trendline Work Added/Removed Trendline New Baseline

Acme Rocket Sled Enhanced Product Burndown
Projected completion in 1 - 5 sprints

0

E
ffo

rt
un

its
: s

to
ry

 p
oi

nt
s

400

300

200

100

-100

-200

-300

-400

-500

Sprint -- Average Velocity: 47.36 story points/sprint
1 2 3 4 5 6 7 8 9 10 11 (12) (13) (14) (15) (16) (17)

7/
5/

06

7/
21

/0
6

8/
14

/0
6

8/
29

/0
6

9/
14

/0
6

9/
29

/0
6

10
/1

7/
06

11
/2

/0
6

11
/1

9/
06

12
/4

/0
6

12
/1

8/
06

1/
1/

07

Figure 11: A Release Burndown Chart variation popularized by Mike Cohn.5 The red line tracks
PBIs completed over time (velocity), while the blue line tracks new PBIs added (new scope
discovery). The intersection projects release completion date from empirical trends.6

 Scaling
Bad News: It’s Hard.

Scrum addresses uncertain requirements and technology risks by
grouping people from multiple disciplines into one team (ideally in one
team room) to maximize communication bandwidth, visibility, and
trust.

When requirements are uncertain and technology risks are high,
adding too many people to the situation makes things worse. Grouping
people by specialty also makes things worse. Grouping people by
architectural components (a.k.a. component teams) makes things
worse . . . eventually.

Figure 12: Communication pathways increase as a square of team size.

Good News: Feature Teams May Help.

The most successful approach to this problem has been the creation of
fully cross-functional “feature teams,” able to operate at all layers of the
architecture in order to deliver customer-centric features. In a large
system this requires learning new skills.

As teams focus on learning — rather than short-term micro-efficiencies
— they can help create a learning organization.

Figure 13: Feature teams learn to span architectural components.

More Bad News: It’s Still Hard.

Large organizations are particularly challenged when it comes to
Agility. Most have not gotten past pretending to do Scrum.7
ScrumMasters in large organizations should meet with each other
regularly, promoting transformation through a visible list of
organizational impediments, and read books such as Scaling Lean &
Agile Development.8

 Related Practices
Lean

Scrum is a general management framework coinciding with the Agile
movement in software development, which is partly inspired by Lean
manufacturing approaches such as the Toyota Production System.9

eXtreme Programming (XP)

While Scrum does not prescribe specific engineering practices,
ScrumMasters are responsible for promoting increased rigor in the
definition of done. Items that are called “done” should stay done.
Automated regression testing prevents vampire stories that leap out of
the grave. Design, architecture, and infrastructure must emerge over
time, subject to continuous reconsideration and refinement, instead of
being “finalized” at the beginning, when we know nothing.

The ScrumMaster can inspire the team to learn engineering practices
associated with XP: Continuous Integration (continuous automated
testing), Test-Driven Development (TDD), constant merciless
refactoring, pair programming, frequent check-ins, etc. Informed
application of these practices prevents technical debt.

Figure 14: The straight green line represents the general goal of Agile methods: early and
sustainable delivery of valuable features. Doing Scrum properly entails learning to satisfy a
rigorous definition of “done” to prevent technical debt.10

User Interface Layer

Business Logic Layer

Persistence Layer

Team 1

informal
working
group

Team 2 Team 3

Robust “done”

Waterfall

Weak “done”

=Technical
 debt

Time

R
u
n
n
in

g
 (

a
n
d
 T

e
s
te

d
)

F
e
a
tu

re
s

© Copyright 2010 CollabNet, Inc. All rights reserved.

5 Agile Estimation and Planning, Cohn, Addison Wesley (2006)

6 This example graph produced for Wiley E. Coyote by CollabNet ScrumWorks® http://www.scrumworks.com

7 “Seven Obstacles to Enterprise Agility,” Gantthead, James (2010) http://www.gantthead.com/content/articles/255033.cfm

8 Scaling Lean & Agile Development, Larman/Vodde, Addison Wesley (2008)

9 Agile movement defined at http://agilemanifesto.org

10 Graph inspired by discussions with Ronald E. Jeffries

http://www.scrumworks.com
http://www.scrumworks.com
http://www.gantthead.com/content/articles/255033.cfm
http://www.gantthead.com/content/articles/255033.cfm
http://agilemanifesto.org
http://agilemanifesto.org

 Team Self-Organization
Engaged Teams Outperform Manipulated Teams

During Sprint execution, team members develop an intrinsic interest in
shared goals and learn to manage each other to achieve them. The
natural human tendency to be accountable to a peer group contradicts
years of habit for workers. Allowing a team to become self-propelled,
rather than manipulated through extrinsic punishments and rewards,
contradicts years of habit for managers.11 The ScrumMaster’s
observation and persuasion skills increase the probability of success,
despite the initial discomfort.

Challenges and Opportunities

Self-organizing teams can radically outperform larger, traditionally
managed teams. Family-sized groups naturally self-organize when the
right conditions are met:
• members are committed to clear, short-term goals

• members can gauge the group’s progress

• members can observe each other’s contribution

• members feel safe to give each other unvarnished feedback

Psychologist Bruce Tuckman describes stages of group development as
“forming, storming, norming, performing.”12 Optimal self-organization
takes time. The team may perform worse during early iterations than it
would have performed as a traditionally managed working group.13

Heterogeneous teams outperform homogeneous teams at complex
work. They also experience more conflict.14 Disagreements are normal
and healthy on a motivated team; team performance will be determined
by how well the team handles these conflicts.

Bad apple theory suggests that a single negative individual
(“withholding effort from the group, expressing negative affect, or
violating important interpersonal norms” 15) can disproportionately
reduce the performance of an entire group. Such individuals are rare,
but their impact is magnified by a team’s reluctance to remove them.
This can be partly mitigated by giving teams greater influence over who
joins them.

Other individuals who underperform in a boss/worker situation (due to
being under-challenged or micromanaged) will shine on a Scrum team.

Self-organization is hampered by conditions such as geographic
distribution, boss/worker dynamics, part-time team members, and
interruptions unrelated to Sprint goals. Most teams will benefit from a
full-time ScrumMaster who works hard to mitigate these kinds of
impediments.16

 When is Scrum Appropriate?

1

C
h
ao
tic

P
red
ictab
le

A
n
arch
y

Requirements

T
e
c
h
n
o
lo

g
y

known

k
n
o
w
n

u
n
k
n
o
w
n

unknown

It is typical to adopt the defined (theoretical)
modeling approach when the underlying
mechanisms by which a process operates are
reasonably well understood.

When the process
is too complicated
for the defined
approach, the
empirical
approach is the
appropriate
choice.

Figure 15: Scrum, an empirical framework, is appropriate for work with uncertain requirements
and/or uncertain technology issues.17 18

Scrum is intended for the kinds of work people have found
unmanageable using defined processes — uncertain requirements
combined with unpredictable technology implementation risks. When
deciding whether to apply Scrum, as opposed to plan-driven
approaches such as those described by the PMBOK® Guide, consider
whether the underlying mechanisms are well-understood or whether
the work depends on knowledge creation and collaboration. For
example, Scrum was not originally intended for repeatable types of
production and services.

Also consider whether there is sufficient commitment to grow a self-
organizing team.

 About the Author
Michael James learned to program a fairly long
time ago. He worked directly with Ken
Schwaber to become a Scrum Trainer. He
coaches technical folks, managers, and
executives on optimizing businesses to deliver
value. He invites feedback at mj@collab.net or
http://twitter.com/michaeldotjames

 About CollabNet
CollabNet produces ScrumWorks® Basic and Pro — free and low-cost
products to help manage Scrum development. CollabNet also produces
TeamForge®, an Agile Application Lifecycle Management (ALM)
platform optimized around Subversion®, CollabNet’s open-source
revision control system with millions of users. CollabNet provides
Scrum training and consulting. Visit http://www.collab.net/
scrumtraining for details.

© Copyright 2010 CollabNet, Inc. All rights reserved.

11 Intrinsic motivation is linked to mastery, autonomy, and purpose. “Rewards” harm this http://www.youtube.com/watch?v=u6XAPnuFjJc

12 “Developmental Sequence in Small Groups.” Psychological Bulletin, 63 (6): 384-99 Tuckman, referenced repeatedly by Schwaber.

13 The Wisdom of Teams: Creating the High-Performance Organization, Katzenbach, Harper Business (1994)

14 Group Genius: The Creative Power of Collaboration, Sawyer, Basic Books (2007). (This book is #2 on Michael James’s list of recommended reading for ScrumMasters.)

15 “How, when, and why bad apples spoil the barrel: Negative group members and dysfunctional groups.” Research in Organizational Behavior, Volume 27, 181–230, Felps/Mitchell/Byington, (2006)

16 An example detailed list of full-time ScrumMaster responsibilities: http://blogs.danube.com/a-scrummasters-checklist

17 Extensively modified version of a graph in Strategic Management and Organizational Dynamics, Stacey (1993), referenced in Agile Software Development with Scrum, Schwaber/Beedle (2001).

18 Process Dynamics, Modeling, and Control, Ogunnaike, Oxford University Press, 1992.

Version 0.9g

mailto:mj@collab.net
mailto:mj@collab.net
http://twitter.com/michaeldotjames
http://twitter.com/michaeldotjames
http://www.collab.net/scrumtraining
http://www.collab.net/scrumtraining
http://www.collab.net/scrumtraining
http://www.collab.net/scrumtraining
http://www.youtube.com/watch?v=u6XAPnuFjJc
http://www.youtube.com/watch?v=u6XAPnuFjJc
http://blogs.danube.com/a-scrummasters-checklist
http://blogs.danube.com/a-scrummasters-checklist

