
25-Sep-2012©2012 Blueprint Software Systems Inc. All rights reserved

Whitepaper

Optimized Use Cases

Use cases have what seems to be an endless stream of textbooks and
articles written on the topic. In some situations use cases have excelled,
producing remarkable results. In others, they have not fared as well. This
paper describes some best practices for use cases, accumulated through
the use of Blueprint on several projects.

2 25-Sep-2012©2012 Blueprint Software Systems Inc. All rights reserved

Optimized Use Cases Whitepaper

Introduction
Use cases have been around for some time now, bursting onto the public spotlight at the 1987 OOPSLA (object
oriented programming, systems, languages and applications) conference in Orlando. Since that time they’ve
been used in countless projects. Use cases have what seems to be an endless stream of textbooks and articles
written on the topic. In some situations use cases have excelled, producing remarkable results. In others, they
have not fared as well.

One missing piece to this equation is the fact that requirements definition as a professional discipline has
been under served until recently by the industry and by software tool vendors. Communities, professional
organizations, and modern software toolsets are now finally available for requirements authors and to support
the requirements lifecycle. Some of these tools bring new and innovative capabilities not imagined before, and
as they get applied to existing approaches like use cases, new sets of best practices emerge.

This paper describes some best practices for use cases, accumulated through the use of Blueprint on several
projects.

Fundamentals
Less is more
A pervasive, but mistaken belief in the world of requirements gathering is that quantity is always a good thing.
The reality as that the goal of requirements is to precisely communicate what is needed, and for the consumer
of the information to completely and accurately understand what has been communicated.

Example: Pretend for a moment that you just got the job running the county. Tourists arrive with the goal of
discovering the area – its culture, character, history, attractions, and so on. Your job is to help them achieve this
goal. In your enthusiasm you start creating brochures detailing the various aspects of the county. And you keep
on making brochures. So many in fact, that you end up with hundreds that cover every mundane little thing in
the area.

After a month of operation you discover there’s no pattern to the brochures taken – one from here, one
from there. Something like 90% of the brochures haven’t even been touched. Surveys of tourists show no
consistency in their perceptions of the county – it is almost as if different tourists have visited different counties
entirely.

To summarize the results of this:

• The goal of communicating the unique culture and character of the area wasn’t met;
• Visitors all left with very different impressions and understandings of the county;
• You spent a lot of time, effort, and money providing information and 90% of it wasn’t even used.

This example is much like the requirements situation on many projects and organizations. “Information
overload” is a huge problem. So often the answer to every issue and misinterpretation in requirements

3 25-Sep-2012©2012 Blueprint Software Systems Inc. All rights reserved

Optimized Use Cases Whitepaper

documents is to add more content in order to ‘elaborate’ and ‘clarify’. Simply adding more content is generally
counterproductive, often doing more harm than good by introducing conflicting information, inconsistencies, and
redundancies.

When authoring requirements you should always put yourself in the position of the consumer. You should
strive to communicate what’s needed using the smallest volume of content possible. Since even this can be
considerable in size, you also should strive to make that content navigable. This means you should structure the
content in order to best understand what’s being communicated. While this takes skill and effort on behalf of the
requirements author, the positive effects on the software project can be dramatic.

Know your boundaries
If we had to pick one aspect of use case models that people should ensure they do right, it would be to have
a good understanding among all stakeholders of what the system boundary is. A system boundary identifies
where the role of the system ends.

Functionality outside the boundary does not need to be defined. Functionality within the boundary must be
defined. For some applications it’s obvious and apparent, while for others it can be quite the opposite. Since
a use case documents a dialog that spans this boundary, not having a good understanding of it can severely
reduce the clarity of your requirements. For those who rely on the use case model to do their work, people like
designers and testers, their work-products will similarly suffer.

Fantasy vs. Reality. Try bottom-up
For those new to the use case approach, it’s easy to get lost in use cases, includes, extends, actors,
associations, models, and so on. With so much focus on learning to navigate this new and imaginary world, it’s
easy to lose sight of the real world it’s supposed to represent.

Developing work-habits that regularly move you back and forth between the two can help keep your modeling
work grounded in reality. As an example of this, Figure 1 shows all the steps of all the use cases in a workflow
diagram that covers the ‘end to end’ behavior of the system.

This diagram very simply
shows the end-user’s actions
and decisions along with the

system’s responses for the
application being specified.

This is something everyone will
understand, without training. It
doesn’t concern itself with how
these steps are ‘packaged’ into

imaginary containers called “use
cases” and the various types of
relationships between them.

Figure 1 Workflow Diagram showing activities & decisions

4 25-Sep-2012©2012 Blueprint Software Systems Inc. All rights reserved

Optimized Use Cases Whitepaper

Use cases do of course provide many benefits, not the least of which is to clearly identify a higher purpose for a
collection of steps & decisions, to answer the question “why are we doing these actions”.

So, where a group of steps and decisions together fulfill some goal of an external user, we group them and that
becomes a use case. Where a flow crosses from one group to another, this becomes a relationship. If the flow
came from a decision (diamond) it’s an “extends” relationship. Otherwise, it’s an “include” relationship.

Figure 2 shows the workflow with hand-drawn groupings along with it’s associated use case diagram.

There is typically little debate over what the actions and decisions are as this is simply the real-world work that
needs to get done.

On the contrary, there is often debate over what the use cases are, since these are abstract groupings of the
real-world steps and decisions, and one person could come up with a different grouping than the next person.

For multiple people to independently group the steps and decision and come up with a comparable set of use
cases is an indication of a well-understood problem space. It’s important when modeling to not lose sight of the
real-world which is the subject of your model.

Modeling style
The use case diagram you see in Figure 2 is one ‘style’ of structuring. This style makes use of decomposition,
where abstract actions or steps are decomposed into finer detail contained in included use cases. There is much
debate over whether decomposition with use cases is a good idea or not. It is presented here simply as one
approach.

One advantage it offers is to allow readers to “adjust” the level of detail at which they work at a high level,
or follow the path of decomposition to drill into the details of a specific action. One objection to the use of
decomposition is that it will influence the developers who work from the use cases toward implementations that
are not object-oriented in nature.

Figure 2 Use Cases from Workflow

5 25-Sep-2012©2012 Blueprint Software Systems Inc. All rights reserved

Optimized Use Cases Whitepaper

Think like a tester
Tests are very similar to requirements. Both are descriptions of “what the system is supposed to do” so if they’re
talking about the same piece of software then they need to be completely consistent. Some in fact hold the
point of view that tests are really just a more detailed form of the requirements.

Looking at the requirements from the perspective of a tester can be very valuable for detecting issues early.
In particular I’ve found the tester’s perspective can help a great deal in defining the system boundary. This is
because testing is all about providing “stimulus” to some “thing” and then observing that “thing’s” behavior
in response, so the borders of where the “thing” begins and ends need to be clear, and testers are great at
thinking this way.

A second area where testers have been found to be a great help in requirements definition is thinking of
exception cases. Stakeholders and business analysts tend to be very good at identifying what the system should
do when things go right, but experienced testers excel at thinking of all the possible ways that things can go
wrong. Having this knowledge up-front means it can be accounted for and influence the requirements while
they’re being defined, as opposed to being an after-thought late in the cycle.

In addition to the tester as an individual, modern requirements toolsets that can automatically generate tests
provide tremendous value as well. When reviewing requirements – actually even when authoring them –
these tools allow the corresponding tests to be instantly generated and used to provide another litmus-test for
requirements quality. Often inconsistencies and errors can be spotted in the generated tests that were missed
when reviewing just the requirements.

Be expressive
Use cases are our tool for communicating what is to be built. To achieve this you need to be as expressive as
possible with use cases. No matter how good you are with words, written text can only go so far. One of the
easiest yet most effective ways is to mock up potential user interfaces for the steps of the use case. In other
words, render the more significant aspects of the user interface as it evolves through a use case. Most often
this will just be simple sketches, but where appropriate can be higher-fidelity visualizations. Together this set of
mock-ups will form a storyboard for the various scenarios.

If the nature of the project is enhancing an existing application, screen-shots of the existing application can
serve as the starting point, then annotate, markup, or add new screen controls as needed. Shifting focus onto
storyboards as opposed to the text of the use case flows can make reviews significantly more effective. As with
test generation mentioned earlier, there are tools now that support this more visual approach to defining use
cases.

Another way to be more expressive is with data or information. Where the use case affects or transforms data in
the application or where data influences the behavior of the use case, instead of describing this in text, modern
requirements tools will actually allow you to encode these calculations and updates.

During a simulation session not only will the visualizations be shown but samples of real data can be entered,
displayed and calculated similar to the real application. Together this has the effect of ‘bringing the story to life’
as opposed to forcing reviewers to imagine it from textual use cases.

6 25-Sep-2012©2012 Blueprint Software Systems Inc. All rights reserved

Optimized Use Cases Whitepaper

Another example of increasing the expressiveness of the use cases again is provided with modern automation.
There is typically a large amount of reference material on a typical software project related to the requirements.
This can be standards, guidelines, regulations, vision documents, operational documents, and more.

Tools today can automatically open, navigate to relevant content, and highlight it when these references are
called upon. This automatically brings relevant content into the discussion as opposed to leaving it buried off to
the side where important aspects could be missed.

The bigger picture
Where do they come from?
Let’s say I came up to you and said, “Hey, please make me three or four detailed use cases. I’ll be back after
lunch to pick them up, and I expect them to be correct!”. Your chances of delivering what I need are pretty much
zero.

You need to find out what are my goals for the application, what the application is to be used for, what major
decisions will I need it to support, is this enhancing something that exists or is it new, are there any constraints,
are there any special needs like security or safety, and other questions like this. In other words, you have some
work to do before you get to the use cases.

Typically this results in textual, hierarchical lists of goals, rules, and often sketches of the business processes
and possibly domain diagrams in which the application is to support (see figure 3a, 3b, and 3c).

So I’ve made some use cases – now what ?
After creating use cases, you’ll need them to be reviewed with the client for whom the application is for, and also
with the people that are to build and test the application. Reviews of requirements are one of the most crucial
control points in the software lifecycle. It’s an opportunity to point the project in the right direction, and to do so
early. Errors missed in reviews are simply errors whose discovery has been delayed – they will eventually be
found, just later when they’re more expensive to fix.

The effectiveness of the review depends on how well the requirements can be communicated. The more
expressive the requirements, the more likely they’ll be communicated clearly. Another major way to be more
expressive, is to use simulation during reviews.

Modern requirements definition toolsets support simulation of requirements where the requirements can be
“brought to life” to give an impression of how the future application, if built to these requirements, will look, feel,
and behave. After all, most people when reading requirements are in fact performing a simulation in their minds
trying to visualize the future application to help decide if this requirement acceptable.

The problem is that in their minds’ simulation things are missed, all the interactions cannot be accounted for, and
perhaps worst of all everyone has a somewhat different vision depending on how they interpret the written text.
Automated simulation, projected for all to see, has none of these issues and provides all the benefits – literally a
common vision (see Figure 4).

Not only is communication vital during reviews to get the requirements right, but it’s also vital for those who will

7 25-Sep-2012©2012 Blueprint Software Systems Inc. All rights reserved

Optimized Use Cases Whitepaper

Figure 3a Example Business Textual Requirements

Figure 3b Example Business Process

Figure 3c Example Business Domain Diagram

8 25-Sep-2012©2012 Blueprint Software Systems Inc. All rights reserved

Optimized Use Cases Whitepaper

build and test the application to understand what they need to do. Any miscommunication here means people
will go off in the wrong direction with their work. Simulation is also a very good tool for this as well. Once they
do understand however, they actually need access to the use cases and associated requirements information in
order to do their work since their tasks depend upon this information. These are areas where modern tools can
really make a difference, in a number of ways.

First, tools today can automatically generate tests directly from use cases. This is a huge time-saver. Not only
is the work done automatically, but it’s correct. Even more advanced tools allow you to filter the set of tests
produced to focus only on those of high-risk, or the most business-critical.

Second, requirements definition tools today also can auto-populate the tools used by the designers and testers
with the requirements, and tests, produced using the requirements definition tool. This avoids transcription
errors and oversights that often happen when you deliver a document, and the practitioner needs to manually
enter relevant information into their toolset.

Third, requirements definition tools today can automatically generate the documentation you need either
because your process calls for it, or to comply with corporate standards. Document generation governed by
templates allows you to define entirely the format and content of the documents. More advanced tools can
even automatically produce red lined documents showing changes since some previous version like the last
review session for example.

Figure 4 Screen from Use Case Simulation

9 25-Sep-2012©2012 Blueprint Software Systems Inc. All rights reserved

Optimized Use Cases Whitepaper

About Blueprint
Blueprint is the world leader in collaborative requirements definition and management (RDM) solutions for
companies looking to improve the success of critical revenue-generating projects. Blueprint transforms the
business-IT relationship into a visual and engaging collaboration. Errors and omissions are exposed earlier,
a higher-quality set of application requirements is delivered sooner, and requirements-related rework is
prevented. Blueprint enables a unified approach that results in on-time, and on-budget applications. Predictable
project schedules combined with faster time-to-market is critical to the competitive success of Blueprint’s Global
2000 customers. Headquartered in Toronto, Blueprint has global sales, operations and partner presence.
Visit http://www.blueprintsys.com.

conclusion
There have been significant gains made in requirements definition tools in recent years. This perhaps shouldn’t
be surprising given that this area, arguably one of the most crucial for determining the success of software
projects, was neglected by software tool vendors for decades. These advancements, coupled with best
practices learned by applying this new technology in real and complex projects, have the potential to clear the
log-jam of software project failures that has been plaguing the industry for years.

http://www.blueprintsys.com

